技术文章
Technical articles
复杂环境下的低表面能液滴操控对于混合液相分离、化学微反应废物处理等能源、环境与健康领域的应用发展具有重要指导意义。具有液体靶向运输控制功能的仿生结构表面为微滴操控提供了一种能耗更低、制备工艺更简单的解决策略。目前实现基底表面液滴智能运输主要依赖于材料润湿性梯度和结构的不对称性,且相关研究均集中于水处理。油等低表面能液滴的低接触角滞后和接触线滑移使其相比水运动路径更难控制,尽管具有亲油表面的传统圆锥形结构可以实现微油滴的自运输,但复杂环境下的实用性、大容量自发连续低表面张力微液滴输送系统是亟待解决的行业难题与挑战。如何突破现有微滴操控不对称性结构的功能局限实现微油滴气-液界面跨相传输提取更是鲜有研究。
近日,西南科技大学微纳仿生系统与智能化研究团队李国强教授与海河实验室曹墨源研究员合作,受鱼刺微油滴操控功能、水稻叶表面各向异性液滴滑动现象启发,利用PμSL高精密3D打印(摩方精密,nanoArch S140,P150)技术制备了一种多仿生槽锥刺结构(BGCS)实现水下油滴的逆重力高效运输与收集。在非对称拉普拉斯压力和表面毛细力的协同作用下,所设计的2-BGCS结构具备在水下、空气以及跨气-液两相界面超快、连续传输油滴的功能,运输速度最高可达70.2 mm/s。与传统圆锥形结构相比,倾斜角20°时,2-BGCS结构的输送速度提高9倍。在逆重力传输油滴时,2-BGCS结构能够提升超过22 μL的重油滴,通量提升5倍,极大的改善了圆锥结构的功能与性能,且具有输运大体积油滴的潜力。仿生槽锥刺集油阵列装置表现出在水环境下连续、自发地收集油滴的性能。该研究为复杂环境下的油滴从输送到收集提供了一种集成、通用的新策略,在水下微油滴收集系统、生物分析及污染治理等领域具有广阔的应用前景。
评审人对该工作给予高度评价:基于锥形结构和沟槽结构的巧妙结合和功能设计为微流控等领域提供新的仿生策略。该工作以“Directional and Adaptive Oil Self-transport on a Multi-bioinspired Grooved Conical Spine”为题发表在著名期刊《Advanced Functional Materials》上。西南科技大学机械工程2019级硕士生李耀霞和中国科学技术大学仪器科学与技术2021级博士生崔泽航为共同一作,通讯作者为李国强教授和曹墨源研究员。
图1 仿生槽锥刺结构的设计与性能对比。受鱼刺和水稻叶启发,利用精密3D打印制备了不同槽个数的仿生锥形结构。梯度槽和锥形结构的结合,使仿生结构具备水下超快逆重力定向传输功能,对比不同槽数的仿生结构以及传统锥形结构,2-BGCS结构的运输效。果。最。佳。
图2 不同结构连续输送油滴及理论机制的比较。对仿生槽锥形结构、传统锥形结构以及对称圆柱结构在水下进行连续逆重力输送实验对比,微油滴在不同结构上连续运输的高度对比说明仿生槽锥形结构上的微油滴能够不断连续输送,且不影响下一次循环。基于不同结构对比实验,对油滴沿结构运输的模型进行机理分析。
图3 仿生槽锥刺结构在不同环境下油滴运输的应用。基于仿生槽锥形结构水下逆重力油滴运输的优异性能,进一步探讨了在多环境下的油滴运输功能,不仅能够实现微油滴在空气中的超快输送,还可以实现气-液界面跨相油滴传输,集成收集装置能够实现水下油滴的大通量收集。
小结
综上所述,受鱼刺空中油滴定向输送以及水稻叶各向异性槽的启发,作者借助精密3D打印制备新型仿生功能结构,由锥形结构产生的非对称拉普拉斯压力和凹槽结构产生的表面毛细力的共同作用下,提高了油滴在水下传输能力,极大的改善了传统圆锥结构的功能与性能。同时,利用不对称结构实现油滴跨气-液两相界面的精准高效传输,仿生槽锥刺集油阵列装置实现在水环境下超快、连续收集油滴,为复杂环境下的油滴从输送到收集提供了新的方法。
微纳仿生系统与智能化团队一直致力于超快激光微纳精密制造和超精密3D/4D打印制造的基础研究与应用研究,以开发微纳功能结构、芯片、器件及集成系统为目标,服务于能源、环境、健康等重点领域。近年来,该团队报道了一系列高水平研究成果,包括水平振动模式高性能微滴定向驱动(Adv. Mater., 2020, 2005039),飞秒激光诱导自生长蘑菇头凹角结构微柱(Nano Lett., 2021, 21, 9301−9309; ACS Nano2022, 16, 2730-2740),激光3D打印和飞秒激光直写构筑仿鱼骨微液滴多相分流器、仿荻草叶保水功能“即插即用”式高效集水灌溉装置(J. Mater. Chem. A, 2021, 9, 9719; J. Mater.Chem. A, 2021, 9, 5630; Nano-Micro Lett., 2022,14:97),精密3D打印构建仿生麦芒分级系统用于高效雾水收集、受蚊眼启发的激光织构化仿生多功用玻璃(Chem. Eng. J, 2020.125139; Chem. Eng. J,2021.129113),一种用于微样分析的仿生微滴操控器(ACS Appl. Mater. Interfaces 2021, 13, 14741−14751)等40余篇。这些重要成果体现了机械工程学科在科学研究和人才培养方面的新成就。
该研究受到国防科工局十四五基础科研计划项目、装备预研领域基金项目、国家自然科学基金项目、四川省科技创新基金等项目的支持。