技术文章
Technical articles聚合物衍生陶瓷(Polymerderivedceramic,PDC)技术是通过在真空、惰性或反应性气氛中对陶瓷前驱体(Preceramicpolymer,PCP)进行热解来制备碳化物、氮化物和碳氮化物等非氧化物陶瓷。PDC技术的优势在于可以通过分子水平设计实现成分和微观结构的可调节,制备工艺简单且成本低廉。与传统非氧化物陶瓷加工技术相比,其热处理温度较低,仅1000℃左右。由于PDC陶瓷具有优异的力学性能以及耐高温和耐腐蚀能力,一体化成型的复杂形状PDC零部件在航空航天、国防...
近年来,可穿戴电子皮肤(e-skin)飞速发展,现已成为众多科研工作者瞩目的焦点。为了适应应用场景的复杂性和多样性,对于具备多功能性、全面性和强适应性的电子皮肤的需求不断增加。而柔性聚合物固有的高粘弹性使得传统的电子皮肤普遍存在灵敏度低、响应时间长、稳定性差等问题。通常,合理的微结构设计是改善这些性能的有效策略,然而单一的微结构设计很难在显著地扩展传感器监测范围的同时,兼顾其灵敏度和厚度等性能,这严重阻碍了电子皮肤器件的进一步应用发展。人体皮肤作为一种天然的、最为优秀的感受器...
近几年具有出色变形能力和可控性的磁流体机器人受到广泛关注。然而,这些研究大多是在体外进行的,将磁流体用于体内医疗应用仍然是一个巨大的挑战。同时,将磁流体机器人应用于人体也需要解决许多关键问题。本研究创建了基于磁流体的毫米机器人,用于体内肿瘤靶向治疗,其中考虑了生物相容性、可控性和肿瘤杀伤效果。针对生物相容性问题,磁流体机器人使用玉米油作为基载液。此外,该研究使用的控制系统能够在复杂的生物介质中实现对机器人的三维磁驱动。利用1064纳米的光热转换特性,磁流体机器人可以在体外杀死...
位于亚特兰大市中心的佐治亚理工学院,正悄然酝酿着一场看似微小却充满巨大潜能的变革。佐治亚理工学院的电子和纳米技术研究所(IEN)通过引进摩方精密(BMFPrecisionTechInc.)微纳3D打印机,扩充了其高科技设备库。自2021年使用设备以来,面投影微立体光刻(PµSL)技术在推动开拓性研究和创新方面发挥了关键作用,科学家们正在利用摩方精密的微纳3D打印机开发微针,专为微创药物输送而设计,用于视网膜修复领域。摩方精密nanoArch®S140是精度...
液滴自运输对自然界中许多动植物的生存起着至关重要的作用,而自运输速度和距离一直是评价液滴运输效率的关键指标。虽然,通过结构设计、表面处理等手段将液滴的自运输速度提高到了数十毫米/秒量级,但由于液滴与织构基底特征尺寸的匹配问题,制约了多尺度液滴高效自运输的实现。此外,织构基底表面缺陷和粘滞作用往往也会造成液滴的滞留或产生残留水层,这会阻碍雾滴在基底表面沉积,从而降低雾水收集效率。因此,如何实现多尺度液滴的超快速、长距离无损自运输仍然是一个挑战。针对上述问题,近期江苏大学张忠强教...
当前智能制造正在席卷全球,加之工业自动化技术的迭代发展,推动了生物医疗、航空航天、环境监测等行业对机器人应用需求的增加,软体机器人应运而生。软体机器人就是模仿自然界中的软体动物柔软结构和运动方式,基于柔性材料制造出的一种新型机器人。它具备无限自由度和连续变形能力等特性,对于传统机器人无法到达或正常工作的特殊环境有着很强的适应能力,柔软的构型材料使机器人具备更强的人机交互能力,使其具有广泛的应用前景。01合作共赢:PµSL技术与软体机器人在生物医疗领域,软体机器人可...
人类对于细胞的探索从未止步,同时一直在寻求如何在体外培育细胞的方法。但人体内有几十万亿的细胞,为何还需要在体外进行细胞培养呢?想象一下,体外培育细胞就像是一个细胞的小型工厂,我们在这里培养出健康的细胞,然后将它们输送至人体内,修复那些受损的部位。同时,我们还像质检员一样,用实验室里的细胞对新药进行检测,确保它们在进入人体后不会出现问题。通过对细胞进行体外培养,我们可以更深入地了解生命现象,为疾病治疗、组织再生和生物安全等领域提供有力支持。这就是,尽管人体内有无数的细胞,我们仍...
具有多种材料、复杂结构和复杂功能的细丝在可穿戴电子设备、柔性执行器和传感器中都有着非常重要的作用。直接墨水书写技术(DIW)主要用于打印功能性细丝。然而,由于挤出通道本身结构的不可移动,目前可打印的多材料纤维的复杂性和油墨成分是静态不可调节的。这一局限性严重阻碍了直接墨水书写3D打印技术的发展。因此,对打印的组分进行动态可调的亚体素控制,以指导具有多种结构的纤维的打印,为实现可用于打印复杂结构细丝的直接墨水书写技术提供了一种新的策略。近日,北京航空航天大学机械学院陈华伟课题组...