技术文章
Technical articles在机器人科技领域,研发具备多功能和强适应性的系统,已经成为研究推动力。传统的机器人系统受限于固定的结构,这很大程度上削弱了它们在动态环境中的适应能力。想象一下,如果机器人能够根据实际需求灵活调整自身的形态和功能,那么它们在各类环境中的应用前景将十分广泛。AnuruddhaBhattacharjee在南卫理公会大学BAST实验室攻读机械工程博士学位期间,倾力研发了一种模块化机器人立方体。这种机器人立方体配备了磁性连接器和内置磁铁,使得它们可以相互连接并组建各种形态。借助外部磁控...
生命健康产业,涵盖了与人类身心健康相关的所有产业活动,由健康农业、健康制造业和健康服务业三大板块组成。踏入21世纪,生命科学和生物技术的重大突破带来了基因检测、远程医疗、个体化治疗等新兴业态,为生命健康产业注入了新的活力。在这个变革的时代,生命健康产业以人为本,科技创新为核心,不仅拥有了新的发展动力,更赋予了新的内涵。摩方精密在生物材料、微流控、微针以及传感等多方面支撑生命健康领域的创新和发展,致力于为人们的身心健康提供坚实保障。据共研的数据来看,全球生命健康产业市场规模稳步...
中国微米纳米技术学会第二十五届学术年会暨第十四届国际会议(简称CSMNT2023),于2023年10月21-23日在深圳市圆满收官。重庆摩方精密科技股份有限公司(以下简称:摩方精密)携多款样件及终端应用参展,重点展示了在生物医疗、精密电子、科研及创新领域应用的超高精密打印技术,为精密制造行业带来系列定制化解决方案。在本次大会中,摩方精密产品应用工程师卢敏分享了《PμSL微尺度3D打印技术及其在传感应用的进展》,其中详细介绍了两项创新性的传感应用研究。电化学生物传感芯片(检测肌...
在科技日新月异的今天,我们的生活方式、工作方式以及我们对世界的理解都在不断地改变。而精密增材制造技术,正在逐渐改变我们的生活和工作。这种技术的出现,不仅改变了我们对制造业的认知,也为我们的未来发展开辟了新的道路。精密增材制造是一种通过增加材料来制造物体的技术。与传统的切削、铸造等减材制造方法不同,增材制造是一种从无到有,逐层堆积的过程。这种技术的出现,使得我们可以更加精确地控制产品的尺寸和形状,从而大大提高了生产效率和产品质量。该技术的应用非常广泛。在航空航天领域,它可以用于...
微纳3D打印是一种结合了微米级和纳米级3D打印技术的制造方法。它主要用于制造具有微小尺寸和复杂形状的物体,如微机电系统、微流控芯片、生物传感器等微纳3D打印的应用领域非常广泛,包括但不限于以下几个方面:生物医学:微纳3D打印技术可以用于制造生物材料、医疗器械、药物载体、细胞和组织培养等,有助于提高医疗诊断和治疗水平。航空航天:微纳3D打印技术可以用于制造航空航天领域的精密零件和复杂结构,如涡轮发动机的叶片、燃料喷射器等,有助于提高航空器的性能和稳定性。电子科技:微纳3D打印技...
在科技日新月异的今天,3D打印技术已经广泛应用于各个领域,从建筑业到医疗健康,从航空航天到汽车制造,都留下了3D打印技术的足迹。然而,随着科技的不断发展和创新,人们对3D打印技术的需求也在不断提升,尤其是在微尺度领域。这就是3D打印设备的出现,它的优势,正在开启微观世界的制造新篇章。微尺度3D打印设备是一种能够在微米甚至纳米级别进行精确打印的设备。它的出现,为科学研究和精密制造提供了新的可能。例如,在生物医学领域,该设备可以用于打印人体器官模型,帮助医生进行手术模拟和训练;在...
在英国科学与技术设施委员会(STFC-UKRI)中央激光研究所,微靶制造科学家们正积极投身于高功率激光实验的微靶研究。新一代激光器提升了重复频率(高达10Hz),这让高重复制靶法成为了重要的研究途径。在这些高功率激光实验中,科学家们依赖微流控装置实现亚微米级的液体片靶。然而,他们发现,依赖传统的机械加工或蚀刻来制造微流控通道,既耗时又昂贵。因此,研究小组正在寻求一种创新的解决方案,以便能够快速制作新的靶设计几何体原型来满足他们的实验需求。01、研究开发靶研究团队利用微流控设计...
相关研究发现,汗液中的大量生物标志物的浓度与血液中相对应的循环分析物的浓度相关。因此,持续监测这些汗液生物标志物的浓度变化为许多疾病的早期诊断提供了机会,例如,通过对氯化物、葡萄糖、尿酸和酪氨酸的浓度监测,可以实现囊性纤维化、糖尿病和痛风的早期诊断。此外,对汗液流失的追踪将为运动员、军事人员和临床护理医生提供个性化和时效性的反馈,以提醒相关人员及时饮水,从而防止脱水或中暑症状的发生。在特定的时间点实现身体不同部位汗液样本的收集、捕获以及随后的分析是至关重要的,这一需求促进了电...